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Abstract. We derive the off-shell nilpotent (anti-)BRST symmetry transformations for the interacting U(1)
gauge theory of quantum electrodynamics (QED) in the framework of the augmented superfield approach to
the BRST formalism. In addition to the horizontality condition, we invoke another gauge invariant condition
on the six (4, 2)-dimensional supermanifold to obtain the exact and unique nilpotent symmetry transform-
ations for all the basic fields present in the (anti-)BRST invariant Lagrangian density of the physical four
(3+1)-dimensional QED. The above supermanifold is parametrized by four even space–time variables xµ

(with µ= 0, 1, 2, 3) and two odd variables (θ and θ̄) of the Grassmann algebra. The new gauge invariant con-
dition on the supermanifold owes its origin to the (super) covariant derivatives and leads to the derivation
of unique nilpotent symmetry transformations for the matter fields. The geometrical interpretations for all
the above off-shell nilpotent (anti-)BRST transformations are also discussed.

PACS. 11.15.-q; 12.20.-m; 03.70.+k

1 Introduction

The usual superfield approach [3–5, 12] to the Becchi–
Rouet–Stora–Tyutin (BRST) formalism (see e.g. [6–9]
for details) for a p-form (with p = 1, 2, 3, . . . ) Abelian
gauge theory delves deep into the geometrical aspects of
the nilpotent (anti-)BRST symmetries (and correspond-
ing nilpotent generators) for the p-form gauge fields and
the underlying (anti-)ghost fields of the theory. To be pre-
cise, under the above approach, the D-dimensional gauge
theory is first considered on the (D, 2)-dimensional su-
permanifold which is parametrized by the D-number of
even space–time commuting coordinates xµ (with µ =

0, 1, 2, . . . , D−1) and two anticommuting (i.e. θ2 = θ̄2 =
0, θθ̄+ θ̄θ= 0) odd variables (θ and θ̄) of the Grassmann al-

gebra. After this, a (p+1)-form super curvature F̃ (p+1) =

d̃Ã(p) is constructed from (i) the super exterior derivative
d̃= dxµ∂µ+dθ∂θ+dθ̄∂θ̄ (with d̃

2 = 0) and (ii) the super p-

form connection Ã(p) on the (D, 2)-dimensional superman-
ifold. Subsequently, this super curvature F̃ (p+1) is equated,
due to the so-called horizontality condition [1–5], with

the ordinary (p+1)-form curvature F (p+1) = dA(p) con-
structed by the ordinary D-dimensional exterior deriva-
tive d = dxµ∂µ (with d

2 = 0) and the ordinary p-form

connection A(p) defined on the ordinary D-dimensional
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Minkowskian flat space–time manifold on which the start-
ing p-form gauge theory (endowed with the first-class con-
straints) exists.
The above horizontality condition is christened as

the soul-flatness condition in [6], which mathematically
amounts to setting equal to zero all the Grassmannian
components of the (anti-)symmetric tensor that defines
the (p+1)-form super curvature F̃ (p+1) on the (D, 2)-
dimensional supermanifold. The process of reduction of the
(D, 2)-dimensional super curvature to the D-dimensional
ordinary curvature (i.e. the equality F̃ (p+1) = F (p+1))
leads to the derivation of the nilpotent (anti-)BRST sym-
metry transformation for the p-form gauge fields and the
(anti-)commuting (anti-)ghost fields of the theory1. As
a bonus and by-product, the geometrical interpretations
for the nilpotency and anticommutativity properties of
the conserved and nilpotent (anti-)BRST charges2 emerge
very naturally on the supermanifold. However, these beau-
tiful connections between the geometrical aspects of the

1 It can be seen that, for the 2-form Abelian gauge theory,
the bosonic and fermionic ghosts do exist in the BRST formal-
ism and their transformations can be derived using the usual
superfield formalism [10].
2 These charges turn out to be the translational generators
along the Grassmannian directions of the supermanifold. Their
nilpotency and anticommutativity properties are also found to
be encoded in the specific properties associated with the above
translational generators (see e.g. [11–16] for details).
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supermanifold and the (anti-)BRST transformations (and
their corresponding generators) remain absolutely con-
fined to the gauge fields and the (anti-)ghost fields. The
above usual superfield formalism [1–5, 10] does not shed
any light on the (anti-)BRST symmetry transformations
associated with the matter fields of an interacting Abelian
gauge theory.
It is worthwhile to mention, at this juncture, that the

usual superfield approach has also been applied to the case

of four (3+1)-dimensional (4D) 1-form (A(1) = dxµAµ)
non-Abelian gauge theory where the 2-form super curva-

ture F̃ (2) = d̃Ã(1) + Ã(1)∧ Ã(1), defined on the six (4, 2)-
dimensional supermanifold, is equated to the 4D ordinary

2-form curvature F (2) = dA(1)+A(1) ∧A(1) (constructed

from d = dxµ∂µ and A
(1)) due to the horizontality condi-

tion. As expected, this procedure of covariant reduction of
the 2-form super curvature to ordinary curvature leads to
the derivation of nilpotent (anti-)BRST symmetry trans-
formations, associated with the non-Abelian gauge field
and the anticommuting (anti-)ghost fields of the theory
(see e.g. [4]). The matter (Dirac) fields of the interacting
non-Abelian gauge theory are found to play no role in the
above covariant reduction associated with the horizontal-
ity condition. As a consequence, one does not obtain the
nilpotent (anti-)BRST symmetry transformations for the
matter (Dirac) fields by the usual superfield formalism.
The purpose of our present paper is to derive uniquely

and exactly the off-shell nilpotent (anti-)BRST symmetry
transformations for the matter (Dirac) fields of quantum
electrodynamics (QED) in 4D by invoking a new gauge
invariant restriction, besides the usual horizontality condi-
tion, on the six (4, 2)-dimensional supermanifold. In this
context, it is worthwhile to point out that, in a recent set
of papers [11–16], the usual superfield approach (with hori-
zontality condition alone) has been extended to include the
invariance of the conserved (matter) currents/charges to
obtain all the nilpotent and anticommuting (anti-)BRST
symmetry transformations for all the basic fields of the
interacting (non-)Abelian gauge theories as well as the
reparametrization-invariant free scalar and spinning rel-
ativistic particle(s). However, the nilpotent (anti-)BRST
symmetry transformations, which emerge due to the lat-
ter restrictions on the supermanifold, were not proved to
be mathematically unique. One of the central themes of
our present paper is to demonstrate that the new gauge in-

variant restriction on the supermanifold (cf. (11)), which
owes its origin to the (super) covariant derivatives, leads to
the derivation of the off-shell nilpotent (anti-)BRST sym-
metry transformations for the matter fields uniquely. It is
very gratifying that the geometrical interpretations for the
(anti-)BRST symmetry transformations and their corres-
ponding nilpotent generators (that emerge especially after
the application of the horizontality condition) remain in-
tact under the above extended version of the usual super-
field approach to the BRST formalism. Thus, there is very
neat mutual consistency, conformity and complementarity
between the above two restrictions on the supermanifold.
We christen our present approach as well as that of [11–

16] as the augmented superfield formalism because (i) all

these attempts are a set of consistent extensions (and, in
some sense, generalizations) of the usual superfield ap-
proach to the BRST formalism and (ii) the nilpotent and
anticommuting (anti-)BRST transformations for all the
fields of the 4D interacting 1-form Abelian U(1) gauge the-
ory are derived in this superfield approach to the BRST
formalism.
The contents of our present paper are organized as

follows. In Sect. 2, we recapitulate the bare essentials of
the off-shell nilpotent (anti-)BRST symmetry transform-
ations in the Lagrangian formulation for the 4D interacting
U(1) gauge theory (i.e. QED). For the paper to be self-
contained, Sect. 3 is devoted to a brief description of the
derivation of the above symmetry transformations for the
gauge field Aµ and the (anti-)ghost fields (C̄)C by ex-
ploiting the usual horizontality condition on the six (4, 2)-
dimensional supermanifold [4, 11, 12]. The central result of
our paper is contained in Sect. 4, where we derive uniquely
the off-shell nilpotent symmetry transformations for the
matter (Dirac) fields in the framework of the augmented
superfield formalism by exploiting a gauge invariant re-
striction on the six (4, 2)-dimensional supermanifold. Its
gauge covariant version does not lead to the derivation
of correct nilpotent symmetries (see e.g. the appendix).
Finally, we make some concluding remarks and pinpoint
a few future directions for further investigations in Sect. 5.

2 Preliminary: nilpotent (anti-)BRST
symmetries

To set the notation and conventions that will be useful
for our later discussions, we begin with the (anti-)BRST in-
variant Lagrangian density LB for the interacting four (3+
1)-dimensional (4D) U(1) gauge theory (i.e. QED) in the
Feynman gauge3 [6–9]:

LB =−
1

4
FµνFµν + ψ̄ (iγ

µDµ−m) ψ

+B (∂ ·A)+
1

2
B2− i ∂µC̄∂

µC , (1)

where Fµν = ∂µAν −∂νAµ is the field strength tensor for
the U(1) gauge theory and the covariant derivative on
the matter (Dirac) field Dµψ = ∂µψ+ieAµψ leads to the
interaction term between the U(1) gauge field Aµ and
Dirac fields ψ and ψ̄ of mass m and electric charge e

3 We adopt here the conventions and notation such that
the 4D flat Minkowski metric is ηµν = diag (+1,−1,−1,−1)
and � = ηµν∂µ∂ν = (∂0)

2− (∂1)
2− (∂2)

2− (∂3)
2, F0i = Ei =

∂0Ai−∂iA0 = F
i0, Fij = −εijk Bk, Bi = −

1
2εijkFjk , ∂

µAµ =
∂µA

µ = (∂ ·A) ≡ ∂0A0−∂iAi. Here Ei and Bi are the electric
and magnetic fields and εijk is the 3D totally antisymmet-
ric Levi–Civita tensor in the space indices. Furthermore, the
Greek indices µ, ν, . . .= 0, 1, 2, 3 correspond to the space–time
directions on the 4D Minkowskian space–time manifold and the
Latin indices i, j, k, . . . = 1, 2, 3 stand for the space directions
only.
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(i.e. −eψ̄γµAµψ). In fact, this term arises through the
term iψ̄γµDµψ that is present in the Lagrangian density
(1), where γµ’s are the 4× 4 Dirac matrices. The an-
ticommuting (CC̄+ C̄C = 0, C2 = C̄2 = 0, Cψ+ψC = 0,
etc.) (anti-)ghost fields (C̄)C are required to maintain
the unitarity and ‘quantum’ gauge (i.e. BRST) invari-
ance together at any arbitrary order of perturbation
theory4. The Nakanishi–Lautrup auxiliary field B is re-
quired to linearize the gauge-fixing term − 12 (∂ ·A)

2 in
(1). The above Lagrangian density (2) respects the fol-
lowing local, covariant, continuous, off-shell nilpotent
(s2(a)b = 0) and anticommuting (sbsab+ sabsb = 0) (anti-

)BRST (s(a)b)
5 symmetry transformations (see e.g. [6–9]

for all the details)

sbAµ = ∂µC , sbC = 0 ,
sbC̄ = iB , sbψ =−ieCψ ,
sbψ̄ =−ieψ̄C , sbB = 0 ,
sbFµν = 0 , sb(∂ ·A) =�C ,

sabAµ = ∂µC̄ , sabC̄ = 0 ,
sabC =−iB , sabψ =−ieC̄ψ ,
sabψ̄ =−ieψ̄C̄ , sabB = 0 ,
sabFµν = 0 , sab(∂ ·A) =�C̄ .

(2)

The noteworthy points, at this stage, are (i) under the
(anti-)BRST transformations, it is the kinetic energy term
(more precisely Fµν itself) that remains invariant and the
gauge-fixing term (∂ ·A) transforms. It should be empha-
sized that the antisymmetric field strength tensor Fµν
remains invariant under the original local gauge trans-
formation (i.e. δgAµ = ∂µα(x) with α(x) as an infinites-
imal gauge parameter), too. In fact, all the gauge in-
variant quantities remain invariant quantities under the
(anti-)BRST transformations as well. (ii) The starting
local U(1) gauge invariant theory is endowed with the first-
class constraints in the language of Dirac’s classification
scheme for constraints. These constraints are found to be
encoded in the physicality criteria where physical states
(|phys >) (of the total Hilbert space of quantum states)
are annihilated (i.e. Q(a)b|phys >= 0) by the conserved
and nilpotent (anti-)BRST chargesQ(a)b (see e.g. [6–9] for
details). (iii) The local, conserved and nilpotent charges
Q(a)b can be computed by exploiting the Noether theo-
rem. These charges do generate the nilpotent and anti-
commuting (anti-)BRST transformations. This statement

4 The full strength of the (anti-)ghost fields turns up in the
discussion of the unitarity and gauge invariance for the per-
turbative computations in the realm of non-Abelian gauge the-
ory where the loop diagrams of the gauge (gluon) fields play
a very important role. In fact, for each such gluon loop dia-
gram, a ghost loop diagram is required for the precise proof of
unitarity in the theory (see e.g. [7, 17]).
5 We adopt here the notation and conventions followed in [8,
9]. In fact, in its full blaze of glory, a nilpotent (δ2B = 0) BRST
transformation δB is equal to the product of an anticommut-
ing (ηC =−Cη, ηC̄ =−C̄η, ηψ =−ψη, ηψ̄ =−ψ̄η, etc.) space–
time-independent parameter η and sb (i.e. δB = η sb) with

s2b = 0.

can be succinctly expressed in mathematical form as given
below:

srΩ(x) =−i [Ω(x), Qr ]± , r = b, ab , (3)

where the local generic field Ω =Aµ, C, C̄, ψ, ψ̄, B and the
(+) − signs, as the subscripts on the square bracket, stand
for the bracket to be an (anti-)commutator for the local
generic field Ω being (fermionic) bosonic in nature.

3 Symmetries for gauge and (anti-)ghost
fields: usual superfield formalism

To obtain the off-shell nilpotent symmetry transform-
ations for the gauge field Aµ and the (anti-)ghost fields
(C̄)C, we begin with a six (4, 2)-dimensional superman-
ifold parametrized by the superspace coordinates ZM =
(xµ, θ, θ̄), where xµ (µ = 0, 1, 2, 3) are the even (bosonic)
space–time coordinates and θ and θ̄ are the two odd
(Grassmannian) coordinates. On this supermanifold, one

can define a 1-form super connection Ã(1) = dZM ÃM ,
where ÃM = (Bµ(x, θ, θ̄),F(x, θ, θ̄), F̄(x, θ, θ̄)) are the
component multiplet superfields [4, 3] with Bµ being

bosonic in nature andF , F̄ being fermionic (i.e.F2 = F̄2 =
0). The superfields Bµ(x, θ, θ̄),F(x, θ, θ̄), F̄(x, θ, θ̄) can be
expanded in terms of the basic fields Aµ(x), C(x), C̄(x),
the auxiliary field B(x) of (1) and some extra fields as [4,
3, 11]

Bµ(x, θ, θ̄) =Aµ(x)+ θ R̄µ(x)+ θ̄ Rµ(x)+ i θ θ̄Sµ(x) ,

F(x, θ, θ̄) = C(x)+ i θB̄(x)+ i θ̄ B(x)+ i θ θ̄ s(x) ,

F̄(x, θ, θ̄) = C̄(x)+ i θ B̄(x)+ i θ̄ B(x)+ i θ θ̄ s̄(x) . (4)

It is straightforward to note that the local fields Rµ(x),
R̄µ(x), C(x), C̄(x), s(x) and s̄(x) are fermionic (anticom-
muting) in nature and Aµ(x), Sµ(x), B(x), B̄(x), B(x) and
B̄(x) are bosonic (i.e. commuting) so that, in the above
expansion, the bosonic and fermionic degrees of freedom
match. This requirement is essential for the sanctity of any
arbitrary supersymmetric theory described in the frame-
work of the superfield formulation. In fact, all the sec-
ondary fields will be expressed in terms of basic fields (and
their derivatives) due to the restrictions emerging from the
application of the horizontality condition, namely

1

2
(dZM ∧dZN ) F̃MN = d̃Ã

(1) ≡ dA(1)

=
1

2
(dxµ∧dxν) Fµν , (5)

where the super exterior derivative d̃ and the connection
super 1-form Ã(1) are defined as

d̃= dZM∂M

= dxµ∂µ+dθ∂θ+dθ̄∂θ̄ ,

Ã(1)= dZM ÃM

= dxµBµ(x, θ, θ̄)+dθF̄(x, θ, θ̄)+dθ̄F(x, θ, θ̄) . (6)
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In physical language, this requirement (i.e. (5)) implies
that the physical fields Ei and Bi, derived from the cur-
vature term Fµν , do not have any contribution from the
Grassmannian variables. In other words, the physical elec-
tric and magnetic fields (Ei and Bi for the 4D QED) re-
main unchanged in the superfield formulation. Mathemati-
cally, the condition (5) implies the ‘flatness’ of all the com-
ponents of the super curvature tensor F̃MN (derived from
the super 2-form) that are directed along the θ and/or θ̄ di-
rections of the supermanifold. To this end in mind, let us
first expand d̃Ã(1) explicitly as

d̃Ã(1) = (dxµ∧dxν)(∂µBν)− (dθ∧dθ)
(
∂θF̄
)

+(dxµ∧dθ̄)(∂µF −∂θ̄Bµ)

− (dθ∧dθ̄)
(
∂θF+∂θ̄F̄

)
+(dxµ∧dθ)

×
(
∂µF̄ −∂θBµ

)
− (dθ̄∧dθ̄) (∂θ̄F) . (7)

Ultimately, the application of the soul-flatness (horizontal-
ity) condition (d̃Ã(1) = dA(1)) leads to the following rela-
tionships between extra secondary fields and basic fields
(and their derivatives) (see e.g. [11, 12] for all the details):

Rµ (x) = ∂µ C(x) , R̄µ (x) = ∂µC̄(x) ,
s (x) = s̄ (x) = 0 , Sµ (x) = ∂µB (x) ,
B (x)+ B̄ (x) = 0 , B (x) = B̄(x) = 0 .

(8)

The insertion of all the above values in the expansion (4)
leads to

B(h)µ (x, θ, θ̄) =Aµ(x)+ θ ∂µC̄(x)+ θ̄ ∂µC(x)

+ i θ θ̄ ∂µB(x) ,

F (h) (x, θ, θ̄) = C(x) − i θ B(x) ,

F̄ (h) (x, θ, θ̄) = C̄(x)+ i θ̄ B(x) , (9)

where our starting super expansion for the multiplet su-
perfields of (4) has changed to Bµ→B

(h)
µ ,F →F (h), F̄ →

F̄ (h) after the application of the horizontality condition. As
a result, Ã(1)→ Ã(1)(h) = dx

µB
(h)
µ +dθF̄ (h)+dθ̄F (h) in (6).

In fact, the above reduction leads to the derivation of the
(anti-)BRST symmetries for the gauge and (anti-)ghost
fields of the Abelian gauge theory. In addition, this exercise
provides the physical interpretation for the (anti-)BRST
chargesQ(a)b as the generators (cf. (3)) of translations (i.e.
(Limθ̄→0(∂/∂θ),Limθ→0(∂/∂θ̄)) along the Grassmannian
directions of the supermanifold. Both these observations
can be succinctly expressed, in a combined way, by re-
writing the super expansion (3.6) as

B(h)µ (x, θ, θ̄) =Aµ(x)+ θ (sabAµ(x))+ θ̄ (sbAµ(x))

+ θ θ̄ (sbsabAµ(x)) ,

F (h) (x, θ, θ̄) = C(x) + θ (sabC(x)) + θ̄ (sbC(x))

+ θ θ̄ (sb sabC(x)) ,

F̄ (h) (x, θ, θ̄) = C̄(x)+ θ
(
sabC̄(x)

)
+ θ̄ (sbC̄(x))

+ θ θ̄
(
sb sabC̄(x)

)
, (10)

where it is evident that sbC = 0 and sabC̄ = 0 have been
taken into account. In fact, it is because of these inputs

that the above expansion appears so symmetrical when ex-
pressed in terms of the (anti-)BRST transformations s(a)b.

4 Symmetries for the Dirac fields:
augmented superfield approach

It is obvious from the definition and property associ-
ated with the covariant derivative Dµψ(x) = ∂µψ(x)+
ieAµ(x)ψ(x) that an interesting combination of the U(1)
gauge field Aµ and the matter (Dirac) fields, through this
derivative (i.e. ψ̄(x)Dµψ(x)), is a gauge (and, therefore,
BRST) invariant quantity. In what follows, we shall de-
rive the exact and unique expressions for the nilpotent
symmetry transformations (2) for the matter fields by de-
manding the invariance of this gauge invariant quantity on
the supermanifold. This statement can be mathematically
expressed by the following equation:

Ψ̄(x,θ, θ̄)
(
d̃+i e Ã

(1)
(h)

)
Ψ(x, θ, θ̄)

= ψ̄(x)
(
d+i e A(1)

)
ψ(x) , (11)

where d̃ and Ã(1) are the super exterior derivative and su-
per 1-form connection (cf. (6)) on a six (4, 2)-dimensional
supermanifold and d = dxµ∂µ and A

(1) = dxµAµ are their
counterparts on the ordinary 4D Minkowskian space–time
manifold. In particular, Ã

(1)
(h) = dx

µB
(h)
µ +dθF̄ (h)+dθ̄F (h)

is the expression for Ã(1) after the application of the hor-
izontality condition (cf. (9)). The general super expansion
of the superfields (Ψ, Ψ̄)(x, θ, θ̄), corresponding to the ordi-
nary Dirac fields (ψ, ψ̄)(x), is taken as follows:

Ψ(x, θ, θ̄) = ψ(x)+ i θ b̄1(x)+ i θ̄ b2(x)+ i θ θ̄ f(x) ,

Ψ̄(x, θ, θ̄) = ψ̄(x)+ i θ b̄2(x)+ i θ̄ b1(x)+ i θ θ̄ f̄(x) .
(12)

It is clear that, in the limit (θ, θ̄)→ 0, we get back the Dirac
fields (ψ, ψ̄) of the Lagrangian density (1). Furthermore,
the number of bosonic fields (b1, b̄1, b2, b̄2) matches that of
the fermionic fields (ψ, ψ̄, f, f̄), so that the above expan-
sion is consistent with the basic tenets of supersymmetry.
It is straightforward to see that there is only one term

on the r.h.s. of (11), which can be explicitly expressed
as dxµ [ψ̄(x) (∂µ+ieAµ(x)) ψ(x)]. However, it is evident
that on the l.h.s. we shall have the coefficients of the dif-
ferentials dxµ, dθ and dθ̄. To compute explicitly these co-
efficients, let us first focus on the first term of the l.h.s.
of (11):

Ψ̄(x, θ, θ̄) d̃ Ψ(x, θ, θ̄)

= Ψ̄ (dxµ ∂µ) Ψ + Ψ̄ (dθ ∂θ) Ψ + Ψ̄ (dθ̄ ∂θ̄) Ψ , (13)

where it can be readily checked that ∂θΨ = ib̄1+iθ̄f and
∂θ̄Ψ = ib2− iθf . Taking the help of the anticommuting
properties of the Grassmannian variables and their differ-
entials, we obtain the following explicit expressions for the
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coefficients of dθ and dθ̄ from (13):

− (dθ)
[
i ψ̄ b̄1− i θ̄

(
ψ̄ f − i b1 b̄1

)

− θ
(
b̄2 b̄1
)
− θ θ̄

(
b̄2 f + f̄ b̄1

) ]

− (dθ̄)
{
i ψ̄ b2+i θ

(
ψ̄ f +i b̄2 b2

)

− θ̄
(
b1 b2
)
− θ θ̄

(
b1 f + f̄ b2

) }
, (14)

where we have exploited dθ Ψ̄ = −Ψ̄ dθ, etc., and the ex-
pansion of (Ψ, Ψ̄)(x, θ, θ̄) from (12). Using, once again, the
anticommuting properties (i.e. θ2 = θ̄2 = 0, θθ̄+ θ̄θ = 0) of
the Grassmannian variables θ and θ̄, we obtain the follow-
ing explicit expression for the coefficientKµ(x, θ, θ̄) of dx

µ

from the first term of (13), namely

(dxµ)Kµ(x, θ, θ̄)≡ (dx
µ)
[ {
ψ̄∂µψ

}
(x)+ i θ Lµ(x)

+ i θ̄ Mµ(x)+ i θ θ̄ Nµ(x)
]
,

(15)

where the long-hand expressions for Lµ(x),Mµ(x) and
Nµ(x) are

Lµ(x) = b̄2 ∂µ ψ− ψ̄ ∂µ b̄1 ,

Mµ(x) = b1 ∂µ ψ− ψ̄ ∂µ b2 ,

Nµ(x) = ψ̄ ∂µ f + f̄ ∂µψ+i
(
b̄2 ∂µ b2− b1 ∂µ b̄1

)
.

(16)

Let us concentrate on the explicit computation of the
coefficients of dxµ, dθ and dθ̄ that emerge from the sec-
ond term of the l.h.s. of (11) (i.e. i e Ψ̄ Ã

(1)
(h) Ψ). This term,

written in the component fields, has the following clear
expansion:

i e Ψ̄(x, θ, θ̄) Ã
(1)
(h) Ψ(x, θ, θ̄)

= i e
[
Ψ̄
(
dxµ B(h)µ

)
Ψ + Ψ̄

(
dθF̄ (h)

)
Ψ + Ψ̄

(
dθ̄F (h)

)
Ψ
]
,

(17)

where we shall be using the neat expressions for the expan-
sions (9) obtained after the application of the horizontality
condition. It is clear that the latter two terms of (17) lead
to the computation of the coefficients of dθ and dθ̄. These
are as quoted below:

− i e dθ
(
ψ̄C̄ψ

)
+ e dθ θ̄

(
ψ̄C̄b2− ψ̄Bψ+ b1C̄ψ

)

+ e dθ θ
(
ψ̄C̄b̄1+ b̄2C̄ψ

)
+ e dθ θ θ̄

×
[
ψ̄C̄f + f̄ C̄ψ+i

(
b1C̄b̄1+ b̄2Bψ− b̄2C̄b2− ψ̄Bb̄1

) ]
,

− i e dθ̄
(
ψ̄Cψ

)
+ e dθ̄ θ

(
ψ̄Cb̄1+ ψ̄Bψ+ b̄2Cψ

)

+ e dθ̄ θ̄
(
ψ̄Cb2+ b1Cψ

)
,

+ e dθ̄ θ θ̄
[
ψ̄Cf + f̄Cψ+i

×
(
b1Cb̄1+ b1Bψ− b̄2Cb2− ψ̄Bb2

) ]
. (18)

The space–time component (i.e. the coefficient Eµ(x, θ, θ̄)
of dxµ) that emerges from the expansion of the first term of
(17) is given below:

(dxµ)Eµ(x, θ, θ̄) = (dx
µ)
[
i e
{
ψ̄Aµψ

}
(x)+ θ Fµ(x)

+ θ̄ Gµ(x)+ θ θ̄ Hµ(x)
]
.

(19)

The exact expressions for Fµ(x), Gµ(x) and Hµ(x), in
terms of component fields, are

Fµ(x) = e
[
ψ̄ Aµ b̄1− i ψ̄ ∂µC̄ ψ− b̄2 Aµ ψ

]
,

Gµ(x) = e
(
ψ̄ Aµ b2− i ψ̄ ∂µC ψ− b1 Aµ ψ

)
,

Hµ(x) =−e
[
ψ̄ Aµ f + f̄ Aµ ψ− ψ̄ ∂µC̄ b2+ ψ̄ ∂µC b̄1

+ ψ̄ ∂µB ψ+i b̄2 Aµ b2− i b1 Aµ b̄1

− b1 ∂µC̄ ψ+ b̄2 ∂µC ψ
]
. (20)

It should be noted that the above equations (19) and (20)
have emerged from the first term of (17). Now, we first set
the Grassmannian components (i.e. the coefficients of dθ
and dθ̄) equal to zero because there are no such types of
terms for comparison on the r.h.s. of (11). From equations
(14) and (18), we obtain the following terms with dθ:

− i dθ
(
ψ̄b̄1+ eψ̄C̄ψ

)
+i dθ θ̄

×
[
ψ̄f − ib1b̄1− i e

(
ψ̄C̄b2− ψ̄Bψ+ b1C̄ψ

) ]

+dθ θ
[
b̄2b̄1+ e

(
ψ̄C̄b̄1+ b̄2C̄ψ

) ]
+dθ θ θ̄

×
[
b̄2f + f̄ b̄1+ e

{
ψ̄C̄f + f̄C̄ψ

+i
(
b1C̄b̄1+ b̄2Bψ− b̄2C̄b2− ψ̄Bb̄1

)} ]
. (21)

Setting equal to zero the coefficients of dθ, dθ(θ̄), dθ(θ) and
dθ(θθ̄) independently leads to

b̄1 =−eC̄ψ, ψ̄f − ieψ̄C̄b2+ieψ̄Bψ = 0 ,

b̄2b̄1+ e
(
ψ̄C̄b̄1+ b̄2C̄ψ

)
= 0 ,

b̄2f + f̄ b̄1+ e
{
ψ̄C̄f + f̄ C̄ψ+i

×
(
b1C̄b̄1+ b̄2Bψ− b̄2C̄b2− ψ̄Bb̄1

)}
= 0 .
(22)

In the second entry, we have used −ib1b̄1− ieb1C̄ψ = 0 be-
cause b̄1 = −eC̄ψ. The analogue of (21), which emerges

from (14) and (18) with the differential dθ̄, is as follows:

− i dθ̄
(
ψ̄b2+ eψ̄Cψ

)
− i dθ̄ θ

×
[
ψ̄f + īb2b2+i e (ψ̄Cb̄1+ ψ̄Bψ+ b̄2Cψ)

]

+dθ̄ θ̄
[
b1b2+ e

(
ψ̄Cb2+ b1Cψ

) ]
+dθ̄ θ θ̄

×
[
b1f + f̄b2+ e

{
ψ̄Cf + f̄Cψ+i

×
(
b1Cb̄1+ b1Bψ− b̄2Cb2− ψ̄Bb2

)} ]
.

(23)
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For ψ̄ �= 0, we obtain the following independent relations
from the above equation:

b2 =−eCψ ,

ψ̄f +ieψ̄Cb̄1+ieψ̄Bψ = 0 ,

b1b2+ e
(
ψ̄Cb2+ b1Cψ

)
= 0 ,

b1f + f̄b2+ e
{
ψ̄Cf + f̄Cψ+i

×
(
b1Cb̄1+ b1Bψ− b̄2Cb2− ψ̄Bb2

)}
= 0 .

(24)

In the above, in the second entry, ib̄2b2+ieb̄2Cψ = 0 has
been exploited due to the fact that b2 =−eCψ. It can be
readily checked that the equations (22) and (24) allow the
following expression for f as the solution to the second en-
tries of both of them:

f =−i e
(
B+ e C̄ C

)
ψ . (25)

The substitution of all the above values for b̄1, b2 and f in
(12) yields the following expansion of the superfield Ψ in
the language of the (anti-)BRST transformations (2):

Ψ(x, θ, θ̄)

= ψ(x)+ θ (sabψ(x))+ θ̄ (sbψ(x))+ θ θ̄ (sbsabψ(x)) .
(26)

It will be noted that, so far, the third and fourth entries of
(22) and (24) have not been exploited. We shall comment
on them a little later (see (33)).
Now the stage is set for the discussion of the coefficients

of dxµ that emerge from (15) and (19). It is straightforward
to check that the coefficients of the pure dxµ from the l.h.s.
and r.h.s. do match. Furthermore, the coefficient of dxµ θ
ought to be zero because there is no such term on the r.h.s.
The exact expression for such an equality is as follows:

e
(
ψ̄ Aµ b̄1− i ψ̄ ∂µC̄ ψ− b̄2 Aµ ψ

)

+i
(
b̄2 ∂µψ− ψ̄ ∂µb̄1

)
= 0 . (27)

Exploiting the values of b̄1 and b2 from (22) and (24), the
above equation leads to the following useful equation for
the unknown local parameter field b̄2(x):

i
(
b̄2+ e ψ̄ C̄

) (
∂µψ+ieAµψ

)
= 0 . (28)

This yields the value for b̄2 to be −eψ̄C̄ (i.e. b̄2 =−eψ̄C̄).
It is clear that Dµψ = ∂µψ+ ieAµψ �= 0 for an inter-
acting U(1) gauge theory because the interaction term
−eψ̄γµAµψ is hidden in the covariant derivative, in the
sense that it emerges from iψ̄γµDµψ. Setting equal to zero
the coefficient of dxµ θ̄, we obtain

e
(
ψ̄ Aµ b2− i ψ̄ ∂µC ψ− b1 Aµ ψ

)

+i
(
b1 ∂µψ− ψ̄ ∂µb2

)
= 0 . (29)

Substituting the value of b2 (i.e. b2 =−e C ψ), we obtain
the following relation for an unknown local parameter com-
ponent field b1(x) of the expansion (12):

i
(
b1+ e ψ̄ C

) (
∂µψ+ieAµψ

)
= 0 . (30)

The above equation produces the value of b1 as −e ψ̄ C in
a unique fashion. Ultimately, we now focus on the com-
putation of the coefficient of dxµ θ θ̄, which will naturally
be set equal to zero because there is no such term on the
r.h.s. Mathematically, the precise expression, for the above
statement of equality, is as follows:

− e
[
ψ̄ Aµ f + f̄ Aµ ψ− ψ̄ ∂µC̄ b2+ ψ̄ ∂µC b̄1+ ψ̄ ∂µB ψ

+i b̄2 Aµ b2− i b1 Aµ b̄1− b1 ∂µC̄ ψ+ b̄2 ∂µC ψ
]

+i
[
ψ̄ ∂µf + f̄ ∂µψ+i

(
b̄2 ∂µb2− b1 ∂µb̄1

) ]
= 0 . (31)

Substituting the values b1 = −eψ̄C, b̄1 = −eC̄ψ, b2 =
−eCψ, b̄2 =−eψ̄C̄, f =−ie(B+eC̄C) ψ, we obtain the fol-
lowing relationship for the unknown local parameter field
f̄(x):

i
(
f̄ − i e ψ̄ B+i e2 ψ̄ C̄ C

) (
∂µψ+ieAµψ

)
= 0 .

(32)

The above relation yields the expression for f̄(x) in terms
of the fields of the (anti-)BRST invariant Lagrangian dens-
ity (1). Together, all the local (unknown) secondary com-
ponent fields, in the expansion (12) of the superfields
(Ψ, Ψ̄)(x, θ, θ̄), are as follows:

b1 =−eψ̄C , b2 =−eCψ ,

b̄1 =−eC̄ψ , b̄2 =−eψ̄C̄ ,

f =−ie [B+ eC̄C ] ψ , f̄ =+ie ψ̄ [B+ eCC̄ ] . (33)

It is worthwhile to mention that exactly the same ex-
pressions as quoted above were obtained in our earlier
work [11], where the invariance of the conserved matter
current on the supermanifold was imposed. However, the
above solutions in [11] were not mathematically unique.
In our present endeavor, we have been able to show the
uniqueness and exactness of the solutions (33). Further-
more, the solutions (33) do satisfy all the conditions of (22)
and (24) which have appeared as the third and fourth en-
tries. With the values from (33), the super expansion of the
superfield Ψ̄(x, θ, θ̄), in the language of the (anti-)BRST
transformations (2), is as illustrated below:

Ψ̄(x, θ, θ̄)

= ψ̄(x)+ θ
(
sabψ̄(x)

)
+ θ̄
(
sbψ̄(x)

)
+ θ θ̄

(
sbsabψ̄(x)

)
.

(34)

The above expansion, in terms of s(a)b, bears exactly the
same appearance as its counterpart in (26) where the ex-
pansion for the superfield Ψ(x, θ, θ̄) has been given.
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5 Conclusions

The long-standing problem of the derivation of the nilpo-
tent (anti-)BRST symmetry transformations for the mat-
ter (e.g. Dirac) fields of an interacting gauge theory (e.g.
QED), in the framework of the superfield formalism6, has
been resolved uniquely in our present endeavor. We have
invoked an additional gauge invariant restriction (cf. (11)),
besides the usual horizontality condition (cf. (5)), on the
supermanifold to obtain the off-shell nilpotent symmetry
transformations for the Dirac fields of QED.
It is very interesting and gratifying that both the re-

strictions on the supermanifold are complementary and
consistent with each other and, more importantly, they are
intertwined in the sense that they owe their origin to the

nilpotent (super) exterior derivatives (d̃)d and 1-form (su-

per) connection (Ã(1))A(1). The present extended version
of the usual superfield formalism, which leads to the deriva-
tion of mathematically exact expressions for the off-shell
nilpotent (anti-)BRST symmetry transformations associ-
ated with all the fields of QED, has been christened as the
augmented superfield approach to the BRST formalism.
It is worthwhile to note that the horizontality condition

(cf. (5)) on the supermanifold (that leads to the derivation
of exact nilpotent symmetry transformations for the gauge
and (anti-)ghost fields) is precisely a gauge covariant state-
ment because, for the non-Abelian SU(N) gauge theory,

the 2-form curvature F (2) transforms as F (2) → (F (2))′ =
UF (2)U−1 (with U ∈ SU(N)). It is another matter that it

becomes a gauge invariant statement (i.e. F (2) → (F (2))′ =
UF (2)U−1 = F (2)) for our present case of an interacting
Abelian U(1) gauge theory. In contrast, the additional re-
striction (11), invoked on the supermanifold, is primarily
a gauge invariant statement. In fact, its gauge covariant
version on the supermanifold leads to absurd results (even
for the simplest case of an interacting Abelian U(1) gauge
theory), as can be seen explicitly in the appendix.
Our present theoretical arsenal of the augmented su-

perfield formalism has already been exploited [18, 19] for
the derivation of the exact and unique nilpotent symmetry
transformations for (i) the complex scalar fields in inter-
action with the U(1) gauge field (see e.g. [11, 12] for ear-
lier works) and (ii) the Dirac fields in interaction with the
SU(N) non-Abelian gauge field (see e.g. [14] for our ear-
lier work). As is evident from our discussions, Bµ,F , F̄

form the vector multiplet of the 1-form superfield Ã(1) =
dZM ÃM . One of the most intriguing questions, in this con-
text, is to find some multiplet of a superfield that can ac-
commodate the spinor superfields Ψ(x, θ, θ̄) and Ψ̄(x, θ, θ̄).
So far, we have not been able to find this multiplet. It
would be interesting to find the answer to this question.

6 In the known literature on the usual superfield formulation,
only the nilpotent BRST-type symmetry transformations for
the gauge and (anti-)ghost fields have been derived without any
comment on such types of transformations associated with the
matter fields of an interacting gauge theory [1–5, 10]. However,
in our recent works on the augmented superfield formalism [11–
16], this problem has been addressed.

These are some of the immediate and urgent issues that are
under investigation at the moment and our results will be
reported in future publications [20].
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Appendix : A

Let us begin with the gauge covariant version of (11),
namely
(
d̃+ieÃ

(1)
(h)

)
Ψ
(
x, θ, θ̄

)
=
(
d+ieA(1)

)
ψ(x) , (A.1)

where the symbols carry their usual meaning, as discussed
earlier. It is clear that the r.h.s. of the above equation
(i.e. dxµ(∂µ+ieAµ)ψ(x)) contains a single differential dx

µ.
However, the l.h.s. would yield the coefficients of the differ-
entials dxµ, dθ and dθ̄. In fact, the l.h.s. consists of d̃Ψ and
ieÃ

(1)
(h)Ψ . The former term can be written as

d̃ Ψ = dxµ
(
∂µψ+iθ∂µb̄1+iθ̄∂µb2+iθθ̄∂µf

)

+idθ
(
b̄1+ θ̄f

)
+idθ̄ (b2− θf) , (A.2)

and the latter term can be explicitly expressed as

ieÃ
(1)
(h)Ψ(x, θ, θ̄)

= ie
[
dxµB(h)µ +dθF̄

(h)+dθ̄F (h)
]
Ψ(x, θ, θ̄) .

(A.3)

The latter two terms of the above expression yield the fol-
lowing coefficients of dθ and dθ̄:

iedθ
(
C̄ψ
)
+ edθ(θ)

(
C̄b̄1
)
+ edθ

(
θ̄
) [
C̄b2−Bψ

]

− edθ
(
θθ̄
) [
C̄f − iBb̄1

]
, (A.4)

iedθ̄(Cψ)+ edθ̄(θ)
[
Cb̄1+Bψ

]
+ edθ̄

(
θ̄
)
(Cb2)

+ edθ̄(θθ̄)[Cf − iBb2] . (A.5)

It is straightforward to note that the above coefficients
would not emerge from the r.h.s. Thus, these coefficients
would be set equal to zero. Equating the coefficients of dθ,
dθ(θ), dθ(θ̄) and dθ(θθ̄) equal to zero, we obtain the follow-
ing conditions:

b̄1 =−eC̄ψ , C̄b̄1 = 0 ,

f =−ie
(
Bψ− C̄b2

)
, C̄f − iBb̄1 = 0 . (A.6)

It should be noted that, in the above computation, ex-
actly similar types of terms have been collected from (A.2)
and (A.4). It is obvious that the second and fourth con-
ditions are satisfied if we take into account the value of
b̄1, f and exploit the condition C̄

2 = 0. Similarly, we col-
lect the terms of similar kinds from (A.2) and (A.5) and set



234 R.P. Malik: Unique nilpotent symmetry transformations for matter fields in QED: augmented superfield formalism

the coefficients of dθ̄, dθ̄(θ), dθ̄(θ̄) and dθ̄(θθ̄) equal to zero
separately and independently. These lead to the following
conditions:

b2 =−eCψ , f =−ie
(
Bψ+Cb̄1

)
,

Cb2 = 0 , Cf − iBb2 = 0 . (A.7)

It is evident that, in the above, the third and fourth con-
ditions are satisfied. Finally, exploiting the conditions in
(A.6) and (A.7), we obtain the following:

b̄1 =−eC̄ψ , b2 =−eCψ ,

f =−ie(B+ eC̄C)ψ . (A.8)

It is worth emphasizing that the above results are also ob-
tained from the gauge invariant condition (11) when we set
equal to zero the coefficients of dθ and dθ̄. The key differ-
ence between the gauge invariant condition (11) and the
gauge covariant condition (A.1) is found to be contained in
the coefficients of dxµ. To make this statement more trans-
parent, we expand the first term (i.e. ie dxµ B

(h)
µ ) of (A.3)

as follows:

iedxµ
[
Aµψ+iθ

(
Aµb̄1− i∂µC̄ψ

)

+iθ̄(Aµb2− i∂µCψ)+ iθθ̄Qµ
]
, (A.9)

where the explicit expression for the quantityQµ is

Qµ =Aµf +∂µBψ+∂µCb̄1−∂µC̄b2 . (A.10)

A careful observation of the equations (A.2) and (A.9)
demonstrates that there are coefficients of dxµ, dxµ(θ),
dxµ(θ̄) and dxµ(θθ̄). It is straightforward to note that the
coefficient of pure dxµ from the l.h.s. does match with the
one that emerges from the r.h.s. The coefficients of dxµ(θ),
dxµ(θ̄) and dxµ(θθ̄) are listed below:

dxµ (θ)
[
i∂µb̄1− eAµb̄1+ie∂µC̄ψ

]
,

dxµ (θ̄)
[
i∂µb2− eAµb2+ie∂µCψ

]
,

dxµ(θθ̄)
[
i∂µf − eAµf + e∂µC̄b2− e∂µCb̄1− e∂µBψ

]
.

(A.11)

As is evident, these coefficients are set to zero to have con-
formity with the gauge covariant condition in (A.1). The
substitution of the values from (A.8) into the above condi-
tions leads to the following restrictions:

− ieC̄Dµψ = 0 , −ieCDµψ = 0 ,

e(B− eCC̄)Dµψ = 0 . (A.12)

The above restrictions do not lead to any physically inter-
esting solutions because they imply that Dµψ = 0 for C �=

0, C̄ �= 0, B �= eCC̄. However, for an interacting Abelian
U(1) gauge theory, this condition is absurd. The other
choices, for instance, the conditions: C = 0, C̄ = 0 and B =
eCC̄ (for Dµψ �= 0), are also not acceptable. Thus, we
conclude that the gauge covariant condition (A.1) does

not lead to exact derivations of the nilpotent symmetry
transformations for the matter fields in QED. In contrast,
the gauge invariant restriction (11) does lead to exact
derivations.

References

1. J. Thierry-Mieg, J. Math. Phys. 21, 2834 (1980); Nuovo
Cimento A 56, 396 (1980)

2. M. Quiros, F.J. De Urries, J. Hoyos, M.L. Mazon, E. Ro-
drigues, J. Math. Phys. 22, 767 (1981)

3. R. Delbourgo, P.D. Jarvis, J. Phys. A: Math. Gen. 15,
611 (1981); R. Delbourgo, P.D. Jarvis, G. Thompson, Phys.
Lett. B 109, 25 (1982)

4. L. Bonora, M. Tonin, Phys. Lett. B 98, 48 (1981);
L. Bonora, P. Pasti, M. Tonin, Nuovo Cimento A 63, 353
(1981)

5. L. Baulieu, J. Thierry-Mieg, Nucl. Phys. B 197, 477
(1982); Nucl. Phys. B 228, 259 (1982); L. Alvarez-Gaumé,
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